
4.2  Reac@on Types and Reac@ve Intermediates



Net Reac@on versus Reac@on Mechanism
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• net reac@on describes the star@ng materials and the products of a reac@on 
• reac@on mechanisms describes the individual elementary steps of the reac@on 
• catalyst takes part in the reac@on mechanism but is retained unchanged
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Reac@on Types



Subs@tu@on Reac@ons
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• subs@tu@on reac@ons are displacement of a fragment X by a fragment Y 
• coordina@on number and geometry (i.e., hybridiza@on) do not change 
• the reverse reac@on of a subs@tu@on reac@on is also a subs@tu@on reac@on

• classifica;on by reac;on type describes changes in molecular topology (atom connec;vity)
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Addi@on and Elimina@on Reac@ons
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• addi@on reac@ons are addi@ons of molecular fragments X and Y to a molecule 
• in addi@on reac@ons, coordina@on numbers increase, and geometry (hybridiza@on) changes 
• in addi@on reac@ons, star@ng material must be coordina@vely unsaturated ! 
• the reverse reac@on of an addi@on reac@on is an elimina@on reac@on 
• in elimina@on reac@ons, coordina@on numbers decrease, and geometry (hybridiza@on) changes 
• in elimina@on reac@ons, product must be coordina@vely unsaturated !

• classifica;on by reac;on type describes changes in molecular topology (atom connec;vity)
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Rearrangement Reac@ons
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• rearrangement reac@ons are intramolecular changes to molecular topology (atom connec@vity) 
• coordina@on numbers and geometries (hybridiza@ons) on the connec@ng atoms X and Y change 
• the reverse reac@on of a rearrangement reac@on is also a rearrangement reac@on

• classifica;on by reac;on type describes changes in molecular topology (atom connec;vity)
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Reac@ve Intermediates



Carbon-Centered Reac@ve Intermediates

200

• formal charges are determined by homoly@c bond cleavage and coun@ng electrons

carbanion 
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Polar Reac@on Mechanisms
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• vast majority of chemical reac@ons occurs between “nucleophiles” and “electrophiles”  
• reac;on involves “aback” of the nucleophile free electron pair on electrophile (full curvy arrow) 
• new nucleophile–electrophile bond is formed using the electron pair of the nucleophile

• polar reac@on mechanisms involve reac@ve intermediates that carry formal (or par@al) charges 
• polar reac;ve intermediates carrying formal charges are typically obtained from stable molecular 

precursors by heteroly;c bond cleavage (electron pair stays with more electronega;ve partner)
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Polar Reac@on Mechanisms
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• both electrons are donated by nucleophile, energy gain larger if contribu@ng MO closer in energy 
• high-energy nucleophile HOMO: high electron density, anionic charge, higher valency shell 
• low-energy electrophile LUMO: low electron density, posi@ve charge, lower valency shell

• reac@on can be described as bond forma@on between nucleophile HOMO and electrophile LUMO
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Examples of Nucleophiles
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• nucleophiles are electron pair donors 
• nucleophiles must have a high energy electron pair available for bonding 
• nucleophiles can be nega;vely charged or neutral but must be electron-rich, polarizable species 
• typically a non-bonding electron lone pair (carbanion or a neutral / anionic heteroatom) 
• alterna;vely, a high-energy and polarizable bonding, such as a π bond
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Examples of Electrophiles
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• electrophiles are electron pair acceptors 
• electrophiles must have free valency to accept electron pair  
• electrophiles can be posi;vely charged or neutral but must be electron-deficient 
• proton H+ with empty 1s orbital is the strongest electrophile 
• oíen an electron sextet, such as a carbenium ca;on or a neutral borane 
• alterna;vely, a low-energy an;bonding orbital (such as a σ* MO of a weak bond, or π* MO in C=O)
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Wri@ng Polar Reac@on Mechanisms
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• formal charges reflect the formal count of electrons on each atom 
• total formal charge status must be maintained between star@ng materials and products 
• if an@bonding (σ* or π*) orbitals are involved in nucleophile aNack, (σ or π) bonds are broken !
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Radical Reac@on Mechanisms
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• simple radical reac@ons occur between two (same or different) radicals 
• forma;on of a new bonding electron pair by “combina;on” of the unpaired electrons (•)  
• bond forma;on hence requires electrons to have opposite spin (represented by half arrows)

• radical reac@on mechanisms involve molecules with unpaired electrons as reac@ve intermediates 
• radicals are obtained from stable molecular precursors by homoly;c bond cleavage of weak σ bonds 

(bonding electron pair is equally separated between the bonded atoms)
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Bond Energies
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• homoly@c bond cleavage can be achieved by thermal ac@va@on or light as an energy source 
• all bonds can undergo homoly;c cleavage at elevated temperatures (typically ≥ 200 °C) 
• just a maber of kine;cs because molecules show a Boltzmann distribu;on of thermal energies  
• light can serve as an energy source (e.g. blue of UV, ≤ 400 nm, ≥ 300 kJ/mol) 

ΔG / kJ mol–1

H–OH 498
H–CH3 435

H–Cl 431
H–Br 366
H–I 298

ΔG / kJ mol–1

H3C–OH 383
H3C–CH3 368

H3C–Cl 349
H3C–Br 293
H3C–I 234

ΔG / kJ mol–1

HO–OH 213
MeO–OMe 151

Cl–Cl 243
Br–Br 192

I–I 151
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